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ABSTRACT  

Millets are one of China's primary traditional food crops, and drought can adversely impact their yield and 

quality. To quickly detect the degree of drought stress in cereal grains, this study establishes a nondestructive 

classification model based on hyperspectral imaging technology. The raw spectral data underwent 

preprocessing using six pretreatment methods and various combinations of these methods. Subsequently, 

three distinct algorithms were employed for feature wavelength selection. To assess the severity of drought 

stress on millet, classification models were developed by integrating texture and color features, utilizing 

Support Vector Machine (SVM), Partial Least Squares Discriminant Analysis (PLS-DA), and Multilayer 

Perceptron (MLP) algorithms. The results indicate that the D1st-SVM model, based on CARS wavelength 

selection, exhibits the highest modeling performance when feature wavelengths are fused with significant 

texture and color variables, achieving an accuracy rate of 93%. These findings suggest that drought 

identification in millet can be performed quickly and nondestructively by integrating image features through 

hyperspectral imaging technology. 

 

摘要 

谷子是我国传统主要粮作之一，干旱对其的产量和品质都会产生不利影响。为了快速检测谷子受干旱胁迫程度，

本研究基于高光谱成像技术建立一种无损的分类模型。本研究对原始光谱数据进行六种预处理方法，以及这些

方法的不同组合，对光谱数据中的噪声进行处理。采用 3 种不同算法进行特征波长的选取。融合纹理特征和颜

色特征，基于支持向量机（support vector machine，SVM）、最小二乘判别分析（partial least-squares 

discriminant analysis，PLS-DA）和多层感知机算法（Multilayer Perceptron，MLP）建立分类模型，来识别

谷子受干旱胁迫程度。结果表明特征波段融合重要纹理特征、重要颜色特征变量时，基于 CARS 波长选择的

D1st-SVM 模型的建模性能最高，预测集的分类准确度为 93%。研究结果表明，利用高光谱成像技术融合图像

特征可以快速、无损地识别谷子是否受到干旱胁迫。 

 

INTRODUCTION 

 In northern China, precipitation levels are low, with uneven seasonal distribution and significant inter-

annual variability, leading to the predominance of semi-arid and arid areas. Millet is one of the primary cereal 

crops in these dry and semi-arid regions, characterized by its drought tolerance, high water and fertilizer 

utilization rates, broad adaptability, and strong resistance to adverse conditions (Wang et al., 2022). Despite 

these attributes, drought stress often threatens millet's growth and development, which significantly impacts 

yield (Yang et al., 2022). Drought is one of the most common and severe abiotic stress factors, adversely 

affecting the growth and productivity of many plants in dry and semi-arid regions (Hussain et al., 2018). As one 

of the crops with the highest water utilization rates (Zou et al., 2019), millet's photosynthesis mechanism can 

suffer irreversible damage due to drought stress (Gerhards et al., 2019), inhibiting root system growth and 

reducing the efficiency of nutrient absorption and utilization, ultimately leading to slower growth and decreased 

yield. Therefore, accurately identifying the degree of drought stress in millet, supplying water effectively, and 

rationally managing water resources are crucial. In recent years, remote sensing technology (Chen et al., 2022) 

and near-infrared spectroscopy (Wan et al., 2020), among other advanced technologies, have played 

significant roles in detecting drought stress by assessing efficient water utilization by crops and enabling 

rational irrigation. However, natural conditions and spectral resolution limitations make it challenging to capture 

the comprehensive changes in crops under drought stress. Consequently, high spectral imaging technology, 

which combines imaging and spectroscopy (Mansoor et al., 2024), has become a current research hotspot.  
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 In high-throughput plant phenotyping platforms, hyperspectral imaging technology is extensively 

employed for the non-destructive and close-range assessment of plant physiological traits (Mohd Asaari et al., 

2022). Hyperspectral imaging technology can detect subtle changes in plant responses to abiotic stressors, 

such as reduced crop growth and stomatal closure resulting from drought stress (Mansoor et al., 2024; 

Barradas et al., 2021). This technology also minimizes plant damage and reduces chemical pollution (Gerhards 

et al., 2019). It enables rapid prediction of metabolite profiles in crop leaves and accurate classification of 

drought-affected crops using spectral data (C A B et al., 2021). Hyperspectral imaging technology has been 

extensively utilized to analyze crop drought stress. For example, using hyperspectral characteristics, Zhou et 

al. (2021) applied hyperspectral imaging as a high-throughput phenotyping method to detect drought stress in 

citrus trees early. Ioannis et al. (2024) utilized hyperspectral imaging technology to detect drought stress in 

broccoli within agricultural environments. However, these methods primarily rely on single spectral data 

analysis, limiting models' adaptability and decision-making capabilities in practical applications (Xu et al., 2022). 

Therefore, integrating multiple types of information can enhance model performance and robustness. Fusing 

image features with hyperspectral data offers distinct classification, recognition, and model optimization 

advantages. Dong et al. (2015) improved the accuracy of wheat variety classification by combining 

hyperspectral imaging with image feature extraction techniques. Hyperspectral imaging can obtain color 

features that are correlated with specific characteristics (Alessandro et al., 2024). Abdullah et al. (2024) 

established a rice classification model through the integration of spectral and color features, thereby attaining 

accurate discrimination between viable and non-viable rice seeds. Qiao et al. (2024) optimized feature 

variables in the corn kernel moisture content prediction model by fusing color features and texture information 

using hyperspectral imaging technology, thus improving prediction accuracy. These studies indicate that 

hyperspectral imaging technology, combined with image feature fusion, holds great potential for identifying 

plant drought stress, providing insights into plant responses to water scarcity (Mansoor et al., 2024). 

 This study uses millet as the research object and uses a high-throughput plant phenotyping platform to 

collect spectral data. The spectral data is preprocessed, and feature wavelengths are selected. By combining 

high-spectral imaging technology with machine learning methods, the image, and spectral features are fused 

to classify and identify millet drought stress, and an optimal classification model is constructed to realize real-

time identification of drought stress degree in millet fields, aiming to provide a fast and non-destructive 

detection method for millet drought stress identification. 

 

MATERIALS AND METHODS 

Materials 

 The experiment was conducted in the phenotyping platform greenhouse at Shanxi Agricultural University, 

with an average temperature of 32.5 to 34.6°C and an average humidity of 51.3 to 53.8% RH. The materials 

were provided by Shanxi Agricultural University and included drought-resistant varieties of millet, specifically 

"Dao Ba Qi" (B15), "Xiao Miao Jin" (B19), and "Yin Tian Han" (B74), along with sensitive varieties "Liao Gu 

No. 1" (B294) and "Ji Gu 28" (B354). These varieties were planted in pots in the same batch and under identical 

conditions, using a uniformly mixed substrate of nutrient soil and vermiculite in a 3:1 ratio. Each variety was 

assigned three gradients and three replicate groups, resulting in 45 pots of millet plants cultivated.  

Drought-stress experiments were initiated one week after the plants reached the four-leaf and one-heart 

stages. Soil moisture content was monitored using soil moisture sensors, and the drought stress state of the 

millet was further controlled using the weighing method. Three different drought treatment levels were 

established: 

⚫ no drought stress (soil moisture content at 65% ± 2%) 

⚫ moderate drought stress (soil moisture content at 40% ± 2%) 

⚫ severe drought stress (soil moisture content at 30% ± 2%) 

The remaining fertilization schedules, methods, and management measures were maintained consistently. 

Prior to the manifestation of noticeable traits in the moderately drought-stressed plants, hyperspectral data 

were collected weekly, resulting in 315 data samples. 

 

Hyperspectral acquisition system 

Spectral data were acquired using a high-throughput crop phenotyping automatic extraction system, 

with the hyperspectral component of this system illustrated in Fig.1. This component comprises a hyperspectral 

camera, six halogen lamps (with a power of 500 W), a whiteboard, belts, a conveyor belt, a computer, and a 

three-phase asynchronous motor connected by circular wiring, among other components.  
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The spectrometer operates within a spectral range of 400 to 1,000 nm (ImSpector V10E, SPECIM, 

Finland), encompassing 224 distinct wavelength bands. It features a spectral resolution of 5.5 nm and a spatial 

pixel dimension of 1024 pixels. The system operates within an enclosed darkroom environment to minimize 

external light interference and enhance the quality of the collected data. The acquired data are stored in binary 

data stream format. 

 
Fig. 1 - Hyperspectral part of the high-throughput automatic crop phenotype extraction system 

 

Before collecting hyperspectral images, the system needs to be preheated for 30 minutes to eliminate the 
influence of uneven light and dark current on image quality (Jia et al., 2020). Moreover, the relevant parameters 
of the system are set: the camera's exposure time is set to 11.6 ms, the platform's moving speed is set to 15 
mm/s-1, and the object distance is set to 120 cm. During the data collection procedure, the whiteboard has to 
be calibrated to lower the complexity of calculations and the noise produced during the spectral data collection 
(Pouria et al., 2021). In terms of a specific operation, first cover the lens cap, collect a dark current spectral 
data dI , then open the lens cap and collect a whiteboard spectral data rI  and get the reflectance I of the 

corrected rice image according to formula 1:  

100
r d

w d

I I
I

I I
        (1) 

where: I denotes the reflectance of the corrected rice image; rI denotes the reflectance of the original image; 

dI  indicates the dark current-corrected image; and wI  signifies the whiteboard-corrected image.  

The system was calibrated at one-hour intervals throughout the experiment. 

 

Image Feature Extraction 

The texture features of grains are extracted using the gray-level co-occurrence matrix (GLCM). In GLCM, 

the frequency of specific gray-level appearance between each pair of pixels is statistically calculated based on 

the given displacement direction and distance in an image, and this statistical information is integrated into a 

matrix (Prasad et al., 2022). In this study, the distance is set to 1, and the energy, entropy, contrast (Contrast), 

correlation, and homogeneity are calculated at four different directions of 0°, 45°, 90°, and 135°. 

Color features are extracted by creating a high-quality actual color (RGB) synthesis image using the red 

(625.67 nm), green (547.99 nm), and blue (470.31 nm) channels. The HSV color space provides an intuitive 

representation of color properties (Yang et al.,2022). The RGB color information is mapped to the HSV color 

space, where the H, S, and V channels' first-order, second-order, and third-order moments are calculated. 

Color moments serve as a method for expressing color features; since color information is primarily 

concentrated in the lower-order moments (Yang et al.,2022), the use of first-order, second-order, and third-

order moments is sufficient to represent color distribution in digital images (Jiang et al., 2022). The first-order 

moment indicates the average color, the second-order moment represents the dispersion of color, and the 

third-order moment reflects the skewness of color. 

 

Hyperspectral image acquisition and preprocessing 

From each sample dataset, a total of 224 images can be extracted, with segmentation performed to 

identify the region of interest (ROI) within the images, and the average spectral reflectance for this region 

calculated. Specifically, the grayscale image at 676.56 nm, which delineates the plant contours, is first 

extracted from the binary data.  
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This is due to the observation that in the spectral images of millet, the grayscale intensity initially 

deepens before lightening. At the 676.56 nm wavelength, the grayscale image reaches its darkest state, 

resulting in the most pronounced contrast between the plant and the background at this wavelength. 

Subsequently, a threshold segmentation method separates the millet plants from the background, producing 

a binary image. Image masking techniques are then applied to isolate the plant region in the image, designating 

it as the region of interest (ROI). Finally, the average reflectance of all pixels within the ROI is calculated to 

obtain the spectral reflectance, as illustrated in Fig. 2. 

A range of preprocessing algorithms was utilized to mitigate the impacts of light scattering, baseline drift, 

and other confounding factors on the samples (Zhang et al., 2021). These algorithms include first derivative 

(D1st), second derivative (D2nd), standard normalized variate (SNV), multiplicative scatter correction (MSC), 

Savitzky-Golay filtering (SG), and detrending. Furthermore, by the specific characteristics of each algorithm, 

SNV was integrated with detrending, while SG was paired with both D1st and D2nd to facilitate more effective 

preprocessing of the original spectrum. 

 
Fig. 2 - Spectral reflectance extraction process 

 

Feature wavelength selection 

Hyperspectral images encompass a substantial volume of spectral data, characterized by significant 

collinearity and redundant information; thus, selecting relevant feature wavelengths is imperative. The 

methodologies employed for the selection of feature wavelengths include Competitive Adaptive Reweighted 

Sampling (CARS), Successive Projections Algorithm (SPA), and Variable Iterative Space Shrinkage Approach 

(VISSA). CARS is a feature selection technique that integrates Monte Carlo sampling with partial least squares 

regression coefficients (Li et al., 2009), facilitating the identification of the most pertinent spectral features while 

streamlining the data processing workflow. SPA sequentially selects projection directions that best preserve 

the key characteristics of the original data, mapping high-dimensional data into a lower-dimensional subspace 

to achieve dimensionality reduction (Milanez et al., 2017). This process preserves critical and distinct data 

features while effectively capturing differences among various categories. VISSA assesses feature importance 

by evaluating the contributions of individual features to the spectral data, thereby selecting optimal wavelength 

combinations (Zhang et al., 2020). This approach aids in identifying features that are rich in information and 

significance, while also accounting for inter-feature correlations. 

 

Classification model 

This study conducts a comparative analysis of three classification algorithms: Support Vector Machine 

(SVM), Partial Least Squares Discriminant Analysis (PLS-DA), and Multilayer Perceptron (MLP) to identify the 

optimal model for classifying millet based on varying levels of drought severity. SVM is a machine learning 

approach that can be employed in classification, regression, and outlier detection (Kuswidiyanto et al., 2023). 

This research uses a polynomial kernel function to map the input data into a higher-dimensional feature space, 

where an optimal hyperplane is established to segregate data from distinct categories effectively. Additionally, 

five-fold cross-validation is implemented, with optimization performed on both the penalty factor and kernel 

parameters; specifically, the penalty factor is varied within a range of 0 to 100.  
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PLS-DA conducts rotation and projection of the data through Partial Least Squares, effectively handling 

the problem of multicollinearity among features and enhancing classification accuracy (Allen et al., 2017). 

During the modeling process, the number of principal components is selected within the range of 5 to 30; too 

few may result in insufficient information that affects classification accuracy, while too many can lead to 

overfitting. Therefore, selecting an optimal number of principal components that retain critical information is 

essential for achieving effective classification (Feng et al., 2024). MLP can achieve good prediction and 

classification performance on unseen data. It adapts to tasks of varying scales and complexities by adjusting 

both the number of layers and the number of neurons in each layer (Saeideh et al., 2017). It enhances model 

performance and generalization capabilities by employing various activation functions, regularization 

parameters, and other techniques. MLP demonstrates notable proficiency in nonlinear modeling for 

classification tasks. 

The quality of classification models is evaluated by accuracy. The calculation formula is shown in 

Equation (2), which represents the proportion of correctly classified samples out of the total sample number.  

y 100
TP TN

Accurac
TP FN TN FN

        (2) 

where:  TP represents the number of samples predicted to be positive and they are also positive; TN represents 

the number of samples predicted to be negative and they are also negative; FP stands for the number of 

samples predicted to be positive, but they are negative; while FN represents the number of samples predicted 

to be negative, but they are positive. 

 

RESULTS 

Spectrum characteristics analyses 

The spectral reflectance of millet plant samples shows similar trends in the wavelength range of 400 to 

1,000 nm (Fig. 3-a). The reflectance trends of all samples within this range are generally similar. Specifically, 

within the 540 to 590 nm range, a prominent absorption peak forms due to chlorophyll's relatively weak light 

absorption in the green light region (520 to 600 nm). This spectral band corresponds to lower photosynthesis 

efficiency in plants, resulting in higher spectral reflectance in this range (Zhao et al., 2016). Conversely, within 

the 660 to 710 nm range, an absorption trough appears due to chlorophyll's strong light absorption efficiency 

in the red edge region (630 to 690 nm). This area represents a spectral band with higher photosynthesis 

efficiency, enabling plants to exhibit vigorous photosynthetic activity (Zhao et al., 2016). Starting from the 690 

nm range, the reflectance sharply increases with wavelength until reaching a maximum near 760 nm, forming 

the plant-specific red edge position.  

 
Fig. 3 - Characterization curves of spectrum of millet samples 

 

To analyze the impact of drought severity on millet spectra, the average spectral curves of millet under 

no drought stress, moderate drought stress, and severe drought stress conditions are considered 

representatives of different drought severities. The overall trends of the spectral curves for millet under various 

drought severities are similar, as shown in Fig. 3 (b). However, significant differences in spectral curves are 

observed at the peak wavelength range of 540-590 nm, the trough wavelength range of 660-710 nm, and the 

high reflectance region of 730-1000 nm. Spectral reflectance decreases with increasing drought severity within 

the wavelength ranges of 540-590 nm and 730-1000 nm. This is attributed to the reduced water content in the 

millet, which affects the transmission and scattering of light, subsequently leading to a decline in spectral 

reflectance. Conversely, the reflectance increases with drought severity in the wavelength range of 660-
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710nm, which falls within the red edge region where chlorophyll absorption in millet is strongest. This is due 

to decreased chlorophyll content under drought conditions, increasing reflectance. These spectral differences 

demonstrate the feasibility of utilizing hyperspectral imaging technology to identify the drought severity in millet. 

 

Spectral data preprocessing results 

 After applying various preprocessing techniques and their combinations, significant variations were 

observed in the spectral curves, as illustrated in Fig. 4. Specifically, following the application of MSC and SNV 

preprocessing (Fig. 4-a, b), the spectral data exhibited increased concentration, with both methods yielding 

similar trends in the spectral curves. This similarity can be attributed to the shared objective of both 

preprocessing methods: standardizing the spectral morphology across all samples to a unified baseline and 

amplitude, thereby mitigating non-chemical variations within the spectral data. After applying SG filtering (Fig. 

4-c), the curve appeared smoother compared to its original counterpart, with a notable reduction in fluctuations 

and noise within the dataset, facilitating subsequent analytical procedures. The spectral curve resulting from 

D1st processing (Fig. 4-d) revealed pronounced peaks in the 510-540 nm and 700-780 nm wavelength bands 

compared to the original spectrum, aiding in feature extraction and analysis within the spectral dataset. 

Following D2nd preprocessing (Fig. 4-e), significant fluctuations were observed in the spectral curve, 

highlighting the high sensitivity of this method to changes within the spectrum and its ability to accentuate 

subtle variations present. Upon Detrend from the original spectral data (Fig. 4-f), the initially observed concave 

feature within the 660-710 nm range became more pronounced, and a distinct downward trend was evident in 

the 750-1000 nm range. This preprocessing technique effectively eliminated trends or background 

components from the spectrum, thereby redirecting analytical focus towards the intrinsic fluctuation 

characteristics of each spectrum and enhancing both analytical accuracy and reliability. 

 
Fig. 4 - Spectral curves of different preprocessing methods 

 

Two distinct combinations are employed to process the spectral data by integrating the characteristics 

of various preprocessing methods. The spectral data subjected to SG filtering is utilized for D1st calculation 

(Fig. 4-g), resulting in both smoothing and enhancement of local features within the spectral dataset. When 

SG filtering is combined with D2nd processing (Fig. 4-h), it not only smooths the data but also accentuates 
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details within the spectral curve, thereby improving the accuracy of subsequent classification efforts. 

Additionally, when SNV is integrated with detrending (Fig. 4-i), the results indicate that the spectral curve 

retains consistency with trends observed post-detrending while exhibiting a more concentrated distribution. 

This combination effectively corrects systematic errors in the spectral data while mitigating effects introduced 

by detrending. 

 

Modeling analysis based on full wavelengths  

Utilizing data that has undergone preprocessing with varying techniques as input can have a notable 

impact on the outcomes of modeling exercises. Table 1 compares the performance of different preprocessing 

methods within diverse modeling contexts. When employing raw, unprocessed data (RAW) for modeling, the 

MLP model exhibited optimal performance, achieving an accuracy rate of 81.3% in the predictive set 

classification task. A comparative analysis of model classification performance across various preprocessing 

methods reveals that spectral data processed using D1st, SNV, Detrend, and the combined SNV-Detrend 

techniques demonstrate superior modeling outcomes. In the context of the SVM models, applying D1st 

processing led to the highest performance, with a predictive set accuracy of 86.0%. 

Furthermore, implementing the D1st processing technique in both the PLS-DA and the MLP models 

resulted in accuracy rates surpassing those of other preprocessing methods, precisely 79.0% and 84.8%, 

respectively. This underscores the advantage of the D1st processing method across diverse modeling 

paradigms. By emphasizing pivotal features within the original data, the D1st processing technique 

substantially enhances classification accuracy. Consequently, the decision was made to advance with spectral 

data processing and analysis based on the 1Dst processing methodology. 

Table 1 

Classification results of millet drought degree based on Full spectrum 

 
Training set accuracy(%)  Test set accuracy(%) 

SVM PS-DA MLP  SVM PLS-DA MLP 

Raw 91.9 80.4 87.9  81.3 77.9  82.5  

D1st 89.9 91.4 91.4  86.0 79.0 84.8 

D2nd 81.4 79.3 81.4  80.2 74.4 79 

SNV 84.9 79.8 90.4  84.8 79.0 83.7 

MSC 89.4 84.2 84.9  82.5 76.7 77.9 

Detrend 86.4 85.9 89.4  82.5 79.0 82.5 

SG 87.4 80.4 83.4  76.7 70.9 73.2 

SG-D1st 89.9 93.9 86.4  80.2 75.5 75.5 

SG-D2nd 75.3 79.8 74.8  70.9 66.2 70.9 

SNV-Detrend 89.4 83.4 87.9  84.8 77.9 83.7 

 

 

Feature wavelength selection results  

This study employed three distinct algorithms, CARS, SPA, and VISSA, to extract characteristic 

wavelengths from the preprocessed spectral data. The precise distribution of the selected wavelengths is 

graphically depicted in Fig. 5.  

 

 
Fig. 5 - Distribution of characteristic wavelengths selected by different algorithms 
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The SPA algorithm selects 21 bands, the VISSA algorithm selects 74 bands, and the CARS algorithm 

selects 70 bands. The SPA algorithm selects fewer characteristic wavelengths from the spectral data, and the 

distribution is more dispersed. In contrast, the VISSA and CARS algorithms concentrate their selected 

characteristic wavelengths in 590~680 nm and 760~1000 nm, respectively, while exhibiting a more scattered 

distribution in other bands. 

The CARS algorithm utilizes Monte Carlo sampling iterations and an exponential decay function to 

adjust the selection probability of each wavelength band adaptively, ultimately selecting the optimal 

combination of bands that contribute most significantly to modeling. Simultaneously, the number of Monte 

Carlo sampling iterations is determined through cross-validation assessment to achieve optimal algorithm 

performance and efficiency. In the CARS analysis, the Monte Carlo runs are set to 50, with a ratio of 3:1 for 

the training set to the test set in each run, and a 5-fold cross-validation is employed for Root Mean Square 

Error of Cross-Validation (RMSECV). The process of selecting characteristic variables by CARS is illustrated 

in Figure 6. Specifically, Fig. 6 (a) shows the exponential decrease in characteristic wavelengths as the number 

of Monte Carlo sampling iterations increases. Fig. 6 (b) depicts the changes in RMSECV during the Monte 

Carlo sampling iterations, with the RMSECV reaching a minimum value of 0.386 at the 18th iteration. Fig. 6(c) 

displays the trend of changes in the regression coefficient paths during each Monte Carlo sampling process. 

The vertical blue line in the figure indicates that the RMSECV value is minimum at the 18th iteration, with 70 

characteristic wavelengths extracted. 
 

 
Fig. 6 - Changes of related parameters during the sampling operations of CARS 

 

Modeling analysis based on feature wavelength  

The results of modeling the important bands for different feature selection algorithms are shown in Table 

2. When analyzing the data based on the entire wavelength spectrum, the SVM classification model achieved 

notably better results, exhibiting training set and prediction set classification accuracies of 89.9% and 86%, 

respectively. In comparison, the MLP classification model performed slightly worse, achieving accuracies of 

88.9% on the training set and 84.8% on the prediction set. On the other hand, the PLS-DA classification model 

showed a high accuracy of 91.4% on the training set but struggled on the prediction set, achieving only 79% 

accuracy. Three feature wavelength selection algorithms were employed to extract critical wavelengths from 

the spectrum for modeling to enhance classification accuracy further and simplify the model. The classification 

model performance improved significantly after applying the CARS algorithm for feature selection, surpassing 

the performance of the other two algorithms. The VISSA algorithm yielded classification results similar to the 

CARS algorithm, but its prediction set accuracy was 2% lower. In contrast, the performance of the models 

declined after applying the SPA for feature selection, indicating that the SPA might not have captured the most 

relevant information for classification during feature extraction. 
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Table 2 

Classification results of millet drought degree based on important spectral bands 

 
Training set accuracy (%)  Test set accuracy (%) 

SVM PS-DA MLP  SVM PLS-DA MLP 

Full spectrum 89.9 91.4 88.9  86 79  84.8  

SPA 80.4 74.8 79.4  77.9 75.5 76.8 

VISSA 86.4 83.4 88.9  87.2 77.9 83.7 

CARS 91.9 88.9 87.9  87.2 79 83.7 

 

Overall, the classification performance of the CARS-SVM and VISSA-SVM models improved compared 

to the original spectral modeling. Notably, the CARS-SVM model demonstrated an accuracy of 91.9% on the 

training set and 87.2% on the prediction set, exhibiting superior performance among all models. However, the 

classification accuracy of the other models, despite using selected feature wavelengths, did not match the 

level achieved with the original spectral data. This suggests that, while the selected feature wavelengths are 

representative, they do not fully encapsulate the spectral information required for precise classification of 

drought severity in millet. 

Results of texture and color feature selection 

Following the application of principal component analysis to the hyperspectral image, three principal 

component images were extracted, with contribution rates of 99.7%, 0.13%, and 0.11% (Fig. 7). Consequently, 

the optimal principal component image exhibiting a contribution rate of 99.7% was utilized for subsequent 

texture feature extraction. A total of 20 texture features were identified using the GLCM method. To mitigate 

information redundancy, correlation analyses were conducted between the extracted feature values at various 

angles and different drought severities in millet, ultimately resulting in the selection of seven significant texture 

feature variables. 

 
Fig. 7 - The first three principal component images of the millet samples 

 

Color features were derived by calculating the first-order, second-order, and third-order moments of the 

H, S, and V channels from the RGB image, yielding a total of 9 feature values. A correlation analysis was 

performed to optimize further the feature combination between the color features and millet drought severity, 

ultimately resulting in the selection of 6 significant color feature variables. The extracted image texture 

information, color information, and spectral data were subsequently fused for modeling analysis. 

 

Modeling analysis based on the fusion of spectral information and image information  

Incorporating texture and color features into the spectral data significantly enhanced the classification 

accuracy of drought severity in millet (Table 3). Following the integration of spectral data with texture and color 

features, the performance of the three classification models remains broadly consistent with that achieved 

using only spectral feature wavelength extraction. The spectral data were fused with texture and color features, 

respectively, and the performance of the three classification models was consistent with that of the spectral 

data feature wavelength alone. However, when the spectral data was independently fused with important 

texture features (Texture*) and important color features (Color*), the performance of all models was slightly 

improved.  
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Specifically, adding important texture features improved the test set accuracy of the SVM model by 

4.6%, the PLS-DA model by 3.5%, and the MLP model by 4.6%. The fusion of important color features 

improved the test set accuracy of the PLS-DA and MLP models by 2.3% and 4.6%, respectively, but had no 

significant impact on the performance of the SVM model. 

Furthermore, integrating spectral data with important texture and color features significantly enhances 

the performance of classification models. Among these, the SVM model demonstrates superior classification 

accuracy, achieving an accuracy rate of 98.9% for the training set and 93% for the test set; closely following 

is the MLP model, which attains accuracy rates of 92.4% for the training set and 89.5% for the test set; in 

contrast, the PLS-DA model exhibits relatively lower classification accuracy, with rates of 90.9% for the training 

set and 83.7% for the test set. These findings indicate that integrating selected important texture and color 

features can effectively improve drought classification accuracy in millet. 

Table 3 

Classification results of millet drought degree by integrating spectrum, texture features and color features 

 
Training set accuracy (%)  Test set accuracy (%) 

SVM PS-DA MLP  SVM PLS-DA MLP 

Raw 91.9 80.4 87.9  81.3 77.9  82.5  

D1st 89.9 91.4 91.4  86.0 79.0 84.8 

CARS-D1st 91.9 88.4 87.9  87.2 79.0 83.7 

Spectrum + Texture 92.9 85.4 94.4  87.2 80.2 87.2 

Spectrum + Texture* 99.4 84.9 90.4  91.5 82.5 88.3 

Spectrum + Color 92.9 85.4 93.4  86.0 80.2 87.2 

Spectrum + Color* 91.4 87.9 88.4  87.2 81.3 88.3 

Spectrum + Texture* 
+ Color* 

98.9 90.9 92.4 
 

93.0 83.7 89.5 

 

 In conclusion, hyperspectral imaging technology effectively facilitates the acquisition of millet data 

across varying drought levels, thereby enabling precise classification of drought severity. Integrating spectral 

data with texture and color features has significantly enhanced classification accuracy, offering a rapid, non-

destructive, and efficient approach for monitoring drought conditions in millet. 

 

CONCLUSIONS 

This paper employed various preprocessing algorithms and their combinations alongside different 

feature band selection techniques to process hyperspectral data. Concurrently, image feature information was 

integrated to construct a classification model to categorize millet based on varying degrees of drought stress 

accurately. The research findings indicate that the model integrating pre-processing, feature wavelength 

extraction, and machine learning algorithms is feasible for predicting the maturity of rapeseed. Among them, 

the 1st-CARS-SVM model, which incorporates significant texture and color features, has the optimal 

classification performance, with a classification accuracy of 93%, attaining an enhancement in model 

classification accuracy. The study validates the potential of hyperspectral imaging technology in the detection 

of plant drought stress. 

This model offers a rapid and non-destructive approach for identifying the degree of drought stress in 

millet, which holds the potential to provide significant scientific support for enhancing millet yield and irrigation 

management. However, the model still requires improvement, such as the influence of geographical 

environment, different years, and growing conditions on the growth process of millet, which may result in 

variations in the spectral characteristics of millet. In the subsequent working process, these issues will be 

further taken into account to enhance the model's universality. 
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